
EECS 545: Project Progress Report
Comparison of Various Meta-Learning Paradigms in Few-Shot

Preference-Based Reinforcement Learning

Ishan Kapnadak, Sudhanshu Agarwal, Rishikesh Ksheersagar, Shlok Agarwal, Karan Anand
{kapnadak, sudhagar, rishiksh, ashlok, karanand}@umich.edu

June 19, 2024

Abstract

Previous work on preference-based reinforcement learning algorithms with human feedback
has provided some promising results in robotics and other domains. However, these methods

require an exorbitant number of human queries that are implausible for humans to answer. We
explore a few-shot approach to the problem by learning a generalized reward function over

multiple tasks and then quickly adapting it to a desired task through the use of a small
number of human-annotated queries. We experiment with three different meta-learning

paradigms and the inclusion of a prior policy in adaptation.

Introduction
There has been a lot of recent development in the use of reinforcement learning (RL) methods in
multiple domains including game-playing and robot control. However, one crucial aspect of RL
methods that still faces serious issues is the design of the reward function. While a sparse reward
signal does not offer a lot of learning opportunities for the model, designing a dense reward function
by hand requires a lot of work, and such a dense reward function is often prone to reward hacking
where the agent tries to exploit the specific details of the reward function without actually aligning
with the end user goal [Zhu+20]. These issues are further brought to light in multi-task settings
with high-dimensional and continuous state and action spaces.

One new paradigm that has emerged to tackle this issue is the use of human preferences. Reward
functions that are guided by human preferences are often dense and easy to align with human
intent. However, this presents another bottleneck – for the high-dimensional and continuous state
and action spaces for robotics tasks, learning from human preferences would require a lot of human
data - something that is implausible. Solving this bottleneck can have several positive impacts
given the widespread use of RL today. Moreover, if we can provide a method to learn reward
functions through the use of a small number of human-annotated examples, we may also be able
to further extend the use cases of RL to domains that have suffered from the big data curse. This
makes few-shot preference-based RL an interesting and relevant problem to tackle.

Related Work
Early work in improving RL focused on using human-collected data to learn the reward function
for a given task. In particular, inverse RL [AN04] gained some popularity in using human demon-
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strations to learn rewards. Other strategies that emerged involved humans guiding the agent with
natural language instructions [Co-+19], or humans providing rankings [Bro+19]. However, all these
methods face challenges - for example, demonstration-based learning is quite expensive and may
lead to rewards that do not align with user intentions. Similarly, while natural language instruc-
tions and rankings do a better job at aligning the rewards with human intentions, they are still
quite hard for the user to provide. The easiest way to involve a human in the loop is via pairwise
comparisons, since these sort of comparisons are quite simple for users to provide and still do a
good job at aligning rewards with user intentions.

The use of pairwise comparisons gave birth to the domain of preference-based learning. There has
been a lot of recent work in preference-based reinforcement learning. For example, [LSA21] proposes
PEBBLE which represents one of the state-of-the-art algorithms for human-in-the-loop RL. How-
ever, even PEBBLE suffers from the requirement of an unreasonable number of human queries.
Our methodology largely follows [HS22] which builds upon PEBBLE and combines preference-
based learning with meta-learning [Hos+20]. Meta-learning methods are specifically designed for
few-shot scenarios in supervised learning where predictions on new problems are made with only
a small amount of data. [HS22] further combines the methodologies of PEBBLE with Model-
Agnostic Meta-Learning (MAML, [FAL17]) to propose a solution to the few-shot preference-based
reinforcement-learning task. We replicate the methodology proposed in [HS22], and then build
on it by experimenting with different meta-learning paradigms and adding a prior policy. These
variations are described in depth in the following section.

Methodology

Meta-Learning and Preference-Based Learning

Given access to a dataset of N previous tasks {τi}Ni=1, our goal is to learn a policy πnew(a | s) for a
new task τnew from human feedback using as few human queries as possible. The method proposed
in [HS22] (which we follow) proceeds in two phases. First, we pre-train on the datasets for {τi}Ni=1

to learn a generalized reward function r̂ψ(s, a). In the second phase, this reward function is adapted
using online human feedback to better suit the task at hand. Instead of trying to learn the reward
via regression, we use a preference-based approach. Further, instead of single state-action pairs,
we consider partial trajectory segments of the form σ = (st, at, . . . , st+k−1, at+k−1) since these are
often more informative than single state-action pairs [WFT12]. For two partial trajectory segments
σ1 and σ2 (of length k where k is chosen appropriately), a preference predictor is defined over these
two segments according to the Bradley-Terry model [BT52] as follows:
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where σ1 � σ2 means that σ1 is preferred over σ2. Using this, our learning task boils down to
a simple classification task of predicting the preferred segment (note that we actually learn the
reward function and then use this to classify segment pairs), for which we use the standard binary
cross-entropy loss. For a given dataset D of labelled queries (σ1, σ2, y) (where y represents which
segment is preferred), the cross-entropy loss being used is

Lpref(ψ,D) = −E(σ1,σ2,y)∼D (I{y = 1} logP [σ1 � σ2] + I{y = 2} log(1− P [σ1 � σ2]))

For pre-training, we use labelled datasets Di for N tasks where the labels are generated using
simulated policies or offline datasets (notice that this means that we can exploit large amounts
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of data at this stage without requiring human feedback). The proposed method in [HS22] uses
Model-Agnostic Meta-Learning (MAML, [FAL17]) which uses the following update rule for the
parameters ψ of the generalized reward function r̂ψ(s, a):

ψ ← ψ − β∇ψ
N∑
i=1

Lpref
(
ψ − α∇ψLpref(ψ,Di),Di

)
where α and β represent the inner and outer learning rates. Once the pre-training is complete, we
generate a new dataset Dnew of queries for a new task. This is where the human enters the loop to
provide feedback. The advantage of MAML is that it exploits the shared structure between similar
tasks so that the generalized reward function can be easily adapted to a new task using just a few
human queries. In the adaptation phase, we use a simple gradient descent rule to update

ψ ← ψ − α∇ψLpref(ψ,Dnew).

Further, the re-adaptation time can be further reduced by choosing only the most informative
queries to adapt the reward function. This is done by using a disagreement metric [Dan+15] that
maximizes the deviation of P [σ1 � σ2]. Once the reward function is re-adapted to the task at
hand, we use a Soft Actor-Critic algorithm [Haa+18] to learn the policy πnew. The overall learning
paradigm is visually depicted below in Figure 1.

Figure 1: (Adapted from [HS22]) The left half depicts the pre-training phase where labeled queries
over different tasks are used to learn a generalized reward function. In the right half, we re-adapt
this generalized reward function to a new task using human feedback.

REPTILE and Iterated MAML

We also experiment with two variants of the MAML learning algorithm. Firstly, we experiment
with REPTILE [NAS18] which has the following update rule:

ψ ← ψ + α
N∑
i=1

(
ψ̃i − ψ

)
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where ψ̃i denotes the updated parameters on task i after running some η iterations of SGD or Adam
(where η is a hyperparameter). Secondly, we try an iterated version of MAML where the inner
step is performed multiple times before performing the outer update. This may be represented as
follows

ψ ← ψ − α∇ψ
N∑
i=1

Lpref

(
ψ̃i,Di

)
where ψ̃i as before denotes the updated parameters on task i after running some η iterations of
SGD or Adam. Notice the similarity between the three variants of meta-learning we have seen so
far. Our proposed iterated version combines the update form of REPTILE while also adding a
second gradient as per MAML.

Inclusion of a Prior Policy

In addition to employing two auxiliary models to learn the reward for a given state-observation
pair, we conducted experiments involving the adaptation process by introducing a bias in the form
of a prior weighted policy. This adaptation process involves real-time retraining of a pre-trained
model to acquire reward functions and policies tailored for accomplishing specific tasks. Unlike the
approach outlined in the [HS22] where the model is solely retrained on noisy task data, we opted
to generate clean data from a distinct policy within the MetaWorld benchmarks for the same task.
We augmented the datasets for both the validation and adaptation phases with this prior expert
data.
Our rationale behind incorporating this prior policy data, in conjunction with human feedback,
lies in our belief that it offers superior selection for a given set of state-observation pairs. This
strategic integration aims to leverage the strengths of both the expert prior data and human input
to enhance the adaptation process and ultimately improve task performance.

Data Preparation

For generating data, we use the MetaWorld environment. We consider a total of 10 different
tasks within this task, namely – basketball, button-press-topdown, door-open, drawer-close,
peg-insert-side, pick-place, push, reach, sweep, window-open. For each task, we further
consider 25 parametric variations of the ground-truth reward function with some Gaussian noise.
For each such variation, we generate 50 episodes where 15 episodes are generated using expert
policy, 25 episodes are generated from parametric variations of the same task, and 10 episodes are
generated using expert policies from a different task. This gives us a total of 1250 episodes per task.
Each episode is made up of a series of entries/rows where each entry/row contains the state (or
observation) at that timestep, the action taken, the reward obtained, the discount, and a done flag
which indicates whether the task has been completed. Our observation space is 39-dimensional and
our action space is 4-dimensional. Once the episodes are collected each episode is further divided
into segments, each of length lseg. Once the episodes have been segmented, we randomly sample
some number of segments and generate comparisons between all these segments. This is done
separately for each given task. For a given pair of segments (σ1, σ2) we generate the true preference
y based on the ground-truth reward. In particular, we compute

∑
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∑
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and let y indicate which of the two is greater. Data for the pre-training tasks can be found under
the folder datasets/mw in our GitHub repository.

Following this, we also generate data for four additional new tasks that we wish to adapt our
reward function to, namely – drawer-open, lever-pull, shelf-place, sweep-into. This data is
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contained in datasets/mw_valid. As described in the previous subsection, we also generate data for
these same tasks using a prior policy, which can be found under datasets/mw_valid_policy_v1.

Implementation

Disclaimer: Although the authors of our primary reference [HS22] published their code on GitHub,
we faced a host of issues when trying to use their code for replicating the MAML portion of our
experiments. In particular, some of their dependencies were deprecated and could not be used
without a bunch of errors popping up. Since their code for data generation was working, we used
this to generate our data. Following this, our implementation of MAML and the other algorithms
was done from scratch and thus was an intensive task in its own right.

To format the data to be fed into the model we have created functions to break each of the episodes
into segments of fixed size k. These segments (σtj ,En

si ) are then stacked together in a column vector
with y denoting the corresponding column vector of ground-truth rewards as shown below:
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where σ

tj ,El
si denotes the ith segment of the lth episode of the jth task (which itself has k rows

of state-action pairs) and y
tj ,El
si denote corresponding awards. Given the above-formatted data,

we randomly select R number of sigma points from each task and feed-forward through a neural
network with three linear layers. Due to a time constraint, we were not able to use the disagreement
metric [Dan+15] that the original paper [HS22] used for selecting informative queries.

Each state-action pair in our query is fed through a three-layer linear neural network. Each of the
hidden layers is appended with a leaky ReLU activation. The activation at the output layer is a
tanh activation. We have an input size of 43 (since the state space is 39-dimensional and the action
space is 4-dimensional). We further use a hidden size of 256 for each hidden layer.

Experimental Results
We were able to successfully able to pre-train our reward network using all three learning algorithms.
The plots for pre-training loss and accuracy are shown below in Figure 2. As seen, all three
algorithms achieve similar performance on both loss and accuracy after 1000 epochs. Once the
network was pre-trained, it was saved. Our saved models can be found under the models directory.
Once the model was pre-trained, we adapted this model to each of the four validation tasks. For
each validation task, we had two datasets – one with prior policy incorporated, and one without.
Since our main goal was to be able to adapt to a new task in a few-shot scenario, the adaptation
phase was run only 75 epochs instead of the 1000 epochs required for pre-training. A comparison
of the three algorithms for two of the four tasks has been shown below in Figures 3 and 4.
We see that in all cases, the algorithms were able to achieve good performance on both tasks with
as few as 75 epochs. Further, our proposed variant, iMAML, achieves performance comparable
to both MAML and REPTILE. However, we were not able to glean a lot of information from the
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(a) Loss v/s Epochs (b) Accuracy v/s Epochs

Figure 2: Performance of all three algorithms in the pre-training phase

(a) Accuracy on Drawer-Open without prior (b) Accuracy on Drawer-Open with prior

Figure 3: Performance of all algorithms on the Drawer-Open task with and without prior

attached plots about how the inclusion of the prior policy affects the performance of our models.
We then went on to plot a direct comparison between both cases for all three models. Figures 5
and 6 show these plots. We see that the inclusion of the prior doesn’t improve the performance as
we had hoped for. Further, in the case of REPTILE for drawer-open and iMAML for lever-pull,
the performance actually significantly deteriorates. Following this, we decided to reweight the prior
policy in our dataset in order to add some bias towards the existing prior policy. This was achieved
by scaling up the rewards for the prior policy dataset by a fixed constant (we chose 1.5 for our
experiments here). As we see in Figures 7 and 8, a reweighting of the prior greatly helps our case
and improves the performance of our models.
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(a) Accuracy on Lever-Pull without prior (b) Accuracy on Lever-Pull with prior

Figure 4: Performance of all algorithms on the Lever-Pull task with and without prior

(a) MAML (b) REPTILE (c) iMAML

Figure 5: Comparison of prior and no prior for all three algorithms on Drawer-Open

(a) MAML (b) REPTILE (c) iMAML

Figure 6: Comparison of prior and no prior for all three algorithms on Lever-Pull

Future Work & Conclusion
We were able to successfully replicate the algorithm presented in [HS22] and demonstrate its ability
to learn a generalized reward function capable of adapting to new tasks. Further, we were also
able to implement both REPTILE and iMAML, and both these algorithms achieved performance
comparable to MAML. Further, our results show that the network is able to adapt to a new task in
as few as 75 epochs (compared to the 1000 epochs required for pre-training), which corroborates the
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(a) MAML (b) REPTILE (c) iMAML

Figure 7: Comparison of prior and no prior for all three algorithms on Drawer-Open with prior
reweighted

(a) MAML (b) REPTILE (c) iMAML

Figure 8: Comparison of prior and no prior for all three algorithms on Lever-Pull with prior
reweighted

few-shot approach we had initially sought. Further, although including the prior policy deteriorated
the performance, we saw that a simple reweighting of the prior policy did help in improving the
performance of our models in some cases.
So far, we have only learned the reward function and compared performance based on picking
preferred segments, however, this doesn’t give us a lot of information about the agent’s performance
in the environment itself. A more systematic approach would be to use the reward function to learn
the corresponding policy using a Soft Actor-Critic, and then using this policy simulate the agent
on the new tasks. We would then be able to directly look at the success rate of the agent in the
environment and be able to better benchmark our methodology. We plan to do this in our future
work on this project.
Further, we have as of now reweighted the prior policy by just scaling up the rewards. However, we
don’t know yet if this affects the quality of the policy learnt since the rewards for the two datasets
are on a different scale now. Instead, in the future, we plan to reweight the prior policy by altering
the sampling strategy to give more weight to samples generated with a prior policy while sampling
random queries.

Author Contributions
Below is a detailed account of each team member’s contributions to the project, presented in a
table format for clarity. Each category has been renamed to reflect more technical aspects related
to our Few-Shot Preference-Based Reinforcement Learning project.
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Ishan Sudhanshu Rishikesh Shlok Karan
State-of-the-Art Review and Gap Identification X X X X X

Few-Shot Learning Strategy Formulation X X
Data Synthesis and Preparation X X X

Algorithm Implementation and Optimization X X X X X
Inclusion and Reweighting of Prior Policy X X

Results Analysis and Interpretation X X X X
Comprehensive Documentation and Reporting X X

Table 1: Checklist of contributions of each team member to the project

Ishan Kapnadak worked on all aspects of the project, contributing to the literature review,
methodology development with a focus on MAML and iMAML, implementation of the model,
inclusion and experimenting with prior policy, generating plots and results, and drafting the final
report.
Sudhanshu Agarwal equally contributed to the literature survey regarding MAML and PEBBLE,
was involved in data collection and processing, participated in coding the MAML framework into
our solution, and helped in writing and revising our documentation.
Rishikesh Ksheersagar was integral in the literature review, methodology design particularly
in adapting MAML for our model and implementing REPTILE, handled data segmentation and
preparation.
Shlok Agarwal shared responsibilities in reviewing relevant literature, devising the project method-
ology with emphasis on MAML integration, inclusion of prior policy, played a significant role in
implementing the model, and contributed to the analysis and documentation of our results.
Karan Anand engaged in all project phases, with a focus on literature survey, integrating the
data framework with our implementation of MAML, and generating and formatting data to be fed
into the models.
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